

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code WFM01_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017 General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the **application of the mark scheme to a candidate's** response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

PMT

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given **in recent examiners' reports is that the formula should** be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	
1.	$f(x) = 2^x - 10\sin x - 2$, x measured in radians			
(a)	f(2) = -7.092974268 f(3) = -4.588799919		Attempts to find valu for both $f(2)$ and $f(3)$	es 3) M1
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} <i>a</i> is between $x = 2$ and $x = 3$	f(3) = awrt	Both f(2) = awrt - 7 ar t 5 or truncated 4 or truncated 4. sign change and conclusio	d 5, A1 cso n. (2)
(b)	$\frac{a-2}{"7.092974268"} = \frac{3-a}{"4.588799919"}$ or $\frac{a-2}{3-a} = \frac{"7.092974268"}{"4.588799919"}$ or $\frac{a-2}{"7.092974268"} = \frac{3-2}{"4.588799919" + "7.092974268"}$	A correct linear interpolation method. Do not allow the mark if a total of one or three negative lengths are used or either fraction is the wron way up. This mark may be implie	(2) on is ee if M1 op d.	
	Either $a = \left(\frac{(3)("7.092974268") + (2)("4.58879991)}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"-7.092974268"}{"-7.092974268"}\right)$	dependent on tl previous M mar Rearranges to make <i>a</i> =	e dM1 k.	
	$(a = 2.607182963) \Rightarrow a = 2.607 (3.dp)$	268")	2 60	
			2.00	(3)
(b) Way 2	$\frac{x}{"7.092974268"} = \frac{1-x}{"4.588799919"} \rhd x = \frac{"}{"}$	7.092974268. 11.68177419.	" = 0.6071829632	
	<i>a</i> = 2 + 0.6071829632	similar t	Finds x using a correct method riangles and applies " $2 +$ their x	M1 dM1
	${a = 2.607182963} \Rightarrow a = 2.607 (3 dp)$		2.60	07 A1 cao
(b) Way 3	$\frac{1-x}{"7.092974268"} = \frac{x}{"4.588799919"} \Rightarrow x = \frac{"4.588799919"}{11.68177419} = 0.3928170366$			
	a = 3 - 0.3928170366Finds x using a correct method similar triangles and applies "3 - the			M1 dM1
	${a = 2.607182963} \Rightarrow a = 2.607 (3 dp)$		2.60	07 A1 cao
				5

	Question 1 Notes						
1. (a)	A1	correct solution only					
		Candidate needs to state both $f(2) = awrt - 7$ and $f(3) = awrt 5$ or truncated 4 or truncated 4.5					
		along with a reason and conclusion. Reference to change of sign or e.g. $f(2) f(3) < 0$					
		or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must					
		be a (minimal, not incorrect) conclusion, e.g. root is between 2 and 3, hence root is in the					
		interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to					
		continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".					
(a)	Note	In degrees, $f(2) = 1.651005033, f(3) = 5.476640438$					
	Note	Some candidates will write $f(2) = 4$, $f(3) = -0.4147$					

Question Number	Scheme	Notes	Marks			
2.	$2x^2 - x + 3 = 0$ has roots a, b					
	Note: Parts (a) and	(b) can be marked together.				
(a)	$a + b = \frac{1}{2}, ab = \frac{3}{2}$	Both $\partial + b = \frac{1}{2}$ and $\partial b = \frac{3}{2}$	B1			
			(1)			
	1 1 $b+a \frac{1}{2}$	Attempts to substitute at least one of				
(b)	$\frac{-}{a} + \frac{-}{b} = \frac{-}{ab} = \frac{2}{\frac{3}{2}}$	their $(a + b)$ or their ab into $\frac{b+a}{ab}$	M1			
	$=\frac{1}{3}$	$\frac{1}{3}$ from correct working	Al cso			
			(2)			
(c)	$\operatorname{Sum} = \left(2\partial - \frac{1}{b^{\dagger}}\right) + \left(2b - \frac{1}{\partial^{\dagger}}\right)$	Uses at least one of $2(\text{their } (a + b))$ or their				
	$= 2(a+b) - \left(\frac{1}{a} + \frac{1}{b^{\frac{1}{2}}}\right)$	$\frac{1}{a} + \frac{1}{b}$ in an attempt to find a numerical value	M1			
	$= 2\left(\frac{1}{2^{\frac{1}{2}}} - \left(\frac{1}{3^{\frac{1}{2}}} - \frac{2}{3}\right)\right)$	for the sum of $\left(2a - \frac{1}{b^{\dagger}}\right)$ and $\left(2b - \frac{1}{a^{\dagger}}\right)$.				
	Product = $\left(2a - \frac{1}{b^{\dagger}}\right)\left(2b - \frac{1}{a^{\dagger}}\right)$	Expands $\left(2a - \frac{1}{b^{+}}\right) \left(2b - \frac{1}{a^{+}}\right)$ and uses their				
	$=4ab-2-2+\frac{1}{ab}$	ab at least once in an attempt to find a	M1			
	$= 4\left(\frac{3}{2}\right) - 4 + \frac{1}{\left(\frac{3}{2}\right)}$	numerical value for the product of $\begin{pmatrix} 2a & -\frac{1}{2} \end{pmatrix}$ and $\begin{pmatrix} 2b & -\frac{1}{2} \end{pmatrix}$				
	$= 6 - 4 + \frac{2}{3} = \frac{8}{3}$	bt at at				
	$x^2 - \frac{2}{2}x + \frac{8}{2} = 0$	Applies x^2 - (their sum) x + their product (Can be implied)	M1			
	3 3	Note: (" = 0" not required for this mark.)				
	$3x^2 - 2x + 8 = 0$	Any integer multiple of $3x^2 - 2x + 8 = 0$ including the "= 0"	A1			
			(4)			
			7			

		Question 2 Notes					
2. (a)	Note	Finding $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ by writing down a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ or by applying					
		$a + b = \left(\frac{1 + \sqrt{23}i}{4j} + \left(\frac{1 - \sqrt{23}i}{4j}\right) = \frac{1}{2} \text{ and } ab = \left(\frac{1 + \sqrt{23}i}{4j}\right) \left(\frac{1 - \sqrt{23}i}{4j}\right) = \frac{3}{2}$					
		scores B0 in part (a).					
(b), (c)	Note	Those candidates who apply $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ in part (b) and/or part (c) having					
		written down/applied $a, b = \frac{1 + \sqrt{23}i}{4}, \frac{1 - \sqrt{23}i}{4}$ in part (a) will be					
		penalised the final A mark in part (b) and penalised the final A mark in part (c).					
(b)	Note	Applying $a, b = \frac{1+\sqrt{23}i}{4}, \frac{1-\sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.					
		E.g.: Give no credit for $\frac{1}{1+\sqrt{23}i} + \frac{1}{1-\sqrt{23}i} = \frac{1}{3}$					
		4 4					
		or for $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \left(\left(\frac{1+\sqrt{23}i}{4} \right) + \left(\frac{1-\sqrt{23}i}{4} \right) \right)$, $\left(\left(\frac{1+\sqrt{23}i}{4} \right) + \left(\frac{1-\sqrt{23}i}{4} \right) \right) = \frac{1}{3}$					
(c)	Note	Candidates are not allowed to apply $a, b = \frac{1+\sqrt{23}i}{4}, \frac{1-\sqrt{23}i}{4}$ explicitly in part (c).					
	Note	A correct method leading to a candidate stating $p = 3, q = -2, r = 8$ without writing a					
		final answer of $3x^2 - 2x + 8 = 0$ is final A0					

Question Number		Scheme	cheme Notes				
3.	$f(x) = x^4$	$+2x^3+26x^2+32x+160$,	$x_1 = -1 + 3i$ is given.				
		$x_2 = -1 - 3i$	Writes down the root -1 - 3i Note: -1 - 3i needs to be stated explicitly somewhere in the candidate's working for B1	B1			
	$x^{2} + 2x + 10$ $f(x) = (x^{2} + 2x + 10)(x^{2} + 16)$		Attempt to expand $(x - (-1+3i))(x - (-1-3i))$ or $(x - (-1+3i))(x - (\text{their complex } x_2))$ or any valid method <i>to establish a quadratic factor</i> e.g. $x = -1\pm 3i \triangleright x+1 = \pm 3i \triangleright x^2 + 2x + 1 = -9$ or sum of roots -2 , product of roots 10 to give $x^2 \pm (\text{their sum})x + (\text{their product})$	M1			
			$x^{2} + 2x + 10$ Attempts to find the other quadratic factor. e.g. using long division to get as far as $x^{2} +$ or e.g. $f(x) = (x^{2} + 2x + 10)(x^{2} +)$	A1 M1			
	${x^2+16} =$	$=0 \vartriangleright x = $ $\} = \pm \sqrt{16}i; = \pm 16i$	$\frac{1}{4i}$	dM1			
				(7)			
			Question 2 Notes	7			
3	Note	r = -1 + 3i $r = -1 - 1$	3i leading to $(x - 1 + 3i)(x - 1 - 3i)$ is $1^{st} MO 1^{st} AO$				
	Note	Give 3^{rd} M1 for $r^2 + k - k$	$-0, k > 0$ \rightarrow at least one of either $x = \sqrt{k}i$ or $x = -\sqrt{k}$	i			
	1,000	Therefore $r^2 + 16 = 0$ le	rading to a final answer of $r = \sqrt{16}$ i only is 3^{rd} M1	. 1			
	Note	$x^2 + 16 = 0$ leading to x	$t = \pm \sqrt{(16i)}$ unless recovered is 3 rd M0 3 rd A0.				
	Note	Give 3^{rd} M0 for $x^2 + k =$	$= 0, k > 0 \Rightarrow x = \pm ki$				
	Note	Give 3^{rd} M0 for $x^2 + k =$	$= 0, k > 0 \Rightarrow x = \pm k \text{ or } x = \pm \sqrt{k}$				
		Therefore $x^2 + 16 = 0$ le	eading to $x = \pm 4$ is 3^{rd} M0.				
		Therefore $x^2 + 16 = 0$ leading to $(x+4)(x-4) = 0 \vartriangleright x = \pm 4$ is 3^{rd} M0.					
	Note	No working leading to $x = -1 - 3i$, $4i$, $-4i$ is B1M0A0M0A0M0A0.					
	Note	Candidates can go from	$x^2 + 16 = 0$ to $x = \pm 4i$ for the final dM1A1 marks.				
	3 rd dM1	You can give this mark f which can be a 3TO.	for a correct method for solving <i>their</i> quadratic $x^2 + k, k$:	> 0			
	Note	e.g. their 2^{nd} quadratic i	s $x^2 - 16 = 0$ leading to $(x+4)(x-4) = 0 \vartriangleright x = \pm 4$ gets 3	rd M1.			

Question Number	Scheme		Notes		Marks	
4. (a)	$\left\{\sum_{r=1}^{n}r(2r+1)\right\}$	$+1)(3r+1) = \begin{cases} a \\ a \\ r=1 \end{cases} (\underline{6r^3 + 5r^2 + r})$		$6r^3 + 5r^2 + r$		B1
	$= 6 \left(\frac{1}{4}n^2\right)$	$(n+1)^2 + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) + 5\left(\frac{1}{6}n(n+1)(2n+1)\right)$	+ $\left(\frac{1}{2}n(n+1)\right)_{\frac{1}{2}}$	Attempts to expan and attempts to sub correct standard res	d $r(2r+1)(3r+1)$ stitute at least one formula into their sulting expression.	M1
				Correct expressi	on (or equivalent)	A1
	$=\frac{1}{6}n(n+$	-1)(9n(n+1) + 5(2n+1) + 3)	Atte	dependent on the mpt to factorise at lea	previous M mark ast $n(n+1)$ having	dM1
	$=\frac{1}{6}n(n+$	$(-1)(9n^2 + 19n + 8)$		Correct completi Note: 4	ion with no errors. a=9, b=19, c=8	A1 cso
			20			(5)
(b)	Let $f(n)$	$=\frac{1}{6}n(n+1)(9n^2+19n+8).$ S	So $a_{r=10}^{20} r(2r+1)$	(3r+1) = f(20) - f(9)		
	$=\left(\frac{1}{6}(20)\right)$	$\left(\frac{1}{6}(20)(20+1)(9(20)^{2}+19(20)+8)^{\uparrow}_{\uparrow} - \left(\frac{1}{6}(9)(9+1)(9(9)^{2}+19(9)+8)^{\uparrow}_{\uparrow}\right) \qquad f(2)$				M1
	$\begin{cases} = \left(\frac{1}{6}\right)(20) \end{cases}$	$(20)(21)(3988)^{\uparrow}_{\uparrow} - \left(\frac{1}{6}(9)(10)(908)^{\uparrow}_{\uparrow} = 279160 - 13620^{\downarrow}_{\bullet} = 265540^{\downarrow}_{\bullet} = 265540^{\downarrow}_{\bullet}$				A1
						(2)
			Question	4 Notes		/
4. (a)	Note	Applying e.g. $n=1$, $n=2$, $n=1$ to give $a=9$, $b=19$, $c=8$ is	= 3 to the printe B0M0A0M0A	ed equation without a 0.	pplying the standar	d formulae
	Alt 1	Alt Method 1: Using $\frac{3}{2}n^4$ +	$-\frac{14}{2}n^3 + \frac{9}{2}n^2 + \frac{14}{2}n^2 + $	$\frac{4}{2}n^{\circ}\frac{1}{2}an^{4}+\frac{1}{2}(a+b)$	$(b)n^3 + \frac{1}{2}(b+c)n^2 + \frac{1}{2}(b+c)n^2$	$\frac{1}{cn}$ o.e.
	dM1	2 Equating coefficients and fin	3 2 ds at least two	3 6 6 of $a=9 b=19 c=3$	ć 6`ć (R	5
	A1 cso	Finds $a=9, b=19, c=8$ and	d demonstrates	the identity works fo	r all of its terms.	
	Alt 2	Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)^2\right)_{\frac{1}{2}} + 5\left(\frac{1}{6}n(n+1)(2n+1)\right)_{\frac{1}{2}} + \left(\frac{1}{2}n(n+1)\right)_{\frac{1}{2}} = \frac{1}{6}n(n+1)(an^2+bn+c)$				
	dM1 A1	Substitutes $n=1$, $n=2$, $n=3$ into this identity o.e. and finds at least two of $a=9$, $b=1$ Finds $a=9$, $b=19$, $c=8$				=19, c=8
	Note	Allow final dM1A1 for $\frac{3}{2}n^4$	$+\frac{14}{3}n^3+\frac{9}{2}n^2+$	$+\frac{4}{3}n$ or $\frac{1}{6}n(9n^3+2)$	$8n^2 + 27n + 8)$	
		or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8n^3)$	$(n) \rightarrow \frac{1}{6}n(n+1)$	$(9n^2 + 19n + 8)$, from	n no incorrect work	ting.
(b)	Note	Give M1A0 for applying f(2	0) - f(10). i.e.	279160 - 20130 {=	= 259030}	
	Note	Give M0A0 for applying 20	(41)(61) - 9(19	(28) = 50020 - 4788	5 = 45232	
	Note	Give M0A0 for applying 20	(41)(61) - 10(2	1)(31) = 50020 - 651	0 = 43510	
	Note Give M0A0 for listing individual terms. e.g. $6510 + 8602 + + 42978 + 50020 = 265540$					

Question Number	Scheme			Notes	Marks
5.	Z =	$= -7 + 3i; \frac{z}{1+1}$	$\frac{1}{1} + w = 3$	- 6i	
(a)	$\left\{ \left z \right = \sqrt{(-7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or }$	7.61577		$\sqrt{58}$ or awrt 7.62	B1
(b)	$\arg z = \rho - \arctan\left(\frac{3}{7^{\frac{1}{2}}}\right)$ $\operatorname{or} = \frac{\rho}{2} + \arctan\left(\frac{7}{3^{\frac{1}{2}}}\right)$ $\operatorname{or} = -\rho - \arctan\left(\frac{3}{7^{\frac{1}{2}}}\right)$	Use Note:	es trigonome 2^{nd} c (1.3) o $\arctan\left(-\frac{3}{7}\right)$	etry in order to find an angle in the puadrant. i.e. in the range of either 57, 3.14) or $(-3.14, -4.71)$ r (90°, 180°) or $(-180°, -270°)$.	(1) M1
	$ \left\{ = p - 0.40489 \right\} = 2.7367 \left\{ = 2.74 (2 \text{ dp}) \right\} $ either awrt 2.74 or awrt - 3.55 or $\left\{ = -p - 0.40489 \right\} = -3.5464 \left\{ = -3.55 (2 \text{ dp}) \right\} $			A1 o.e.	
(c) Way 1	$\frac{(-7+3i)(1-i)}{(1+i)(1-i)} + w = 3 - 6i$	$\frac{3i)(1-i)}{(1-i)} + w = 3 - 6i$ $\frac{(-7+3i)(1-i)}{(1+i)(1-i)} + w = 3 - 6i \text{ or } \frac{z}{(1+i)(1-i)} + w = 3 - 6i$ or can be implied by $-2 + 5i + w = 3 - 6i$			M1
	w = 5 - 11i $w = 5 - 11i$			pendent on the previous M mark Rearranges to make $w =$ 5 - 11i	dM1 A1
(c)	z + w(1 + i) = (3 - 6i)(1 + i)	Fully corre	ect method o	f multiplying each term by $(1 + i)$	M1
Way 2	$w(1 + i) = (9 - 3i) - (-7 + 3i)$ $w = \frac{(16 - 6i)(1 - i)}{(1 + i)(1 - i)}$ $w = 5 - 11i$	Rearra	deg	bendent on the previous M mark $w =$ and multiplies by $\frac{(1 - i)}{(1 - i)}$ 5 - 11i	dM1 A1
(d)	Im ▲ (-7,3)	Tł	ne point mus ticks on the	Plotting $-7 + 3i$ correctly. st be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>z</i> .	B1
		Re Th	ne point mus ticks on the	Plotting their <i>w</i> correctly. at be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>w</i> .	B1ft
	(5, -11)) plott	ward SC B1	Special Case B0 if both $-7 + 3i$ and their <i>w</i> are relative to each other without any scale or labelled coordinates.	Q
	L				8

PhysicsAndMathsTutor.com

Question Number		Scheme			Notes	Marks
6.	f($(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, x > 0$				
(a)	$f(x) = 3x^2 + \frac{1}{2}x^{-2} + \frac{3}{2}x^{\frac{1}{2}}$		x ³ -	$\rightarrow \pm Ax^2$ or -	At least one of either $\frac{1}{2x} \rightarrow \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \rightarrow \pm Cx^{\frac{1}{2}}$	M1
	or f	$l(x) = 3x^2 + (2x)^{-2}(2) + \frac{3}{2}x^{\frac{1}{2}}$		At least 2	differentiated terms are correct Correct differentiation.	A1 A1
	$\bigg\{\alpha\simeq 0.6$	$-\frac{f(0.6)}{f'(0.6)} \right\} \Rightarrow \alpha \simeq 0.6 - \frac{-0.152575}{3.630783}$	53318 893	depen Valid atte thei	dent on the previous M mark empt at Newton-Raphson using r values of $f(0.6)$ and $f(0.6)$	dM1
	${a = 0.64}$	(420226971) $\triangleright a = 0.642$ (3 dp) a = 0.642 (3 dp) (1 gnore any subsequent iteration)			A1 cso cao	
	C	correct differentiation followed by	a corre	ct answer sc	ores full marks in (a)	
		Correct answer with <u>no</u>	working	scores no n	iarks in (a)	(5)
(b) Way 1	f(0.6415) f(0.6425)	(5) = -0.001630649 $(5) = -0.002020826$ (5)		suitable interval for x , which is 05 of their answer to (a) and at at one attempt to evaluate $f(x)$.	M1	
	Sign chan continuou	ge {negative, positive} {and $f(x)$ i s} therefore {a root} $a = 0.642$ (3 c	s lp)	p) Both values correct awrt (or truncated) to 1 sf, sign change and conclusion.		A1 cso
	A	Newton Donkgon again Heing) on hotton o	a a 0.64200226071	(2)
(b) Way 2	Applying	Newton-Kapnson again Using 2	7 = 0.042	2 or better e.	g. $a = 0.64200226971$	
Way 2	• α	$x \simeq 0.642 - \frac{0.0001949020}{3.651474882} \left\{ = 0.64 \right\}$	1946607	}	Evidence of applying Newton-Raphson	
	• α	$\alpha \simeq 0.642022697 - \frac{0.0002778408}{3.651497787}$	= 0.641	946608}	for a second time on their answer to part (a)	MI
	a=0.64	2 (3 dp)			$\partial = 0.642 (3\mathrm{dp})$	A1 cso
		Note: You can recove	r work i	for Way 2 in	part (a)	(2)
			Ouestio	n 6 Notes		1
6. (a)	Note	Incorrect differentiation followed	by their	estimate of a	<i>a</i> with no evidence of applying t	the
		NR formula is final dM0A0.	-			
	Final	This mark can be implied by apply	ying at le	east one corre	ect <i>value</i> of either $f(0.6)$ or $f(0.6)$).6)
	dM1	in 0.6 - $\frac{f(0.6)}{f(0.6)}$. So just 0.6 - $\frac{f(0.6)}{f(0.6)}$ with an incorrect answer and no other evidence			ce	
		scores final dM0A0.				
	Note	If a candidate writes 0.6 - $\frac{f(0.6)}{f(0.6)}$	= 0.642	2 with no dif	ferentiation, send the response to	o review.

	Question 6 Notes						
6. (b)	A1	Way 1: correct solution only Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or e.g. $f(0.6415) f(0.6425) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a correct conclusion, e.g. $\partial = 0.642$ (3 dp). Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, so $\partial = 0.642$ (3 dp)."					
	Note	Stating "root is in between 0.6415 and 0.6425" without some reference to $a = 0.642$ (3 dp) is not sufficient for A1.					
	Note	The root of $f(x) = 0$ is 0.6419466, so candidates can also choose x_1 which is less than 0.6419466 and choose x_2 which is greater than 0.6419466 with both x_1 and x_2 lying in the interval $[0.6415, 0.6425]$ and evaluate $f(x_1)$ and $f(x_2)$.					
	Note	Conclusions to part (b)Their conclusion needs to convey that they understand that $a = 0.642$ to 3 decimal places.Therefore acceptable conclusions are:e.g. 1: $a = 0.642$ (3 dp)e.g. 2: (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642}e.g. 3: my answer to part (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642}e.g. 4: the answer is correct to 3 d.p. {Note: their answer to part (a) must be 0.642}Note that saying " a is correct to 3 dp" or "0.642 is correct" or " $a = 0.642$ "are not acceptable conclusions.					
	Note	$0.642 - \frac{1}{f(0.642)} = 0.642(3 \text{ dp})$ is sufficient for MIA1 in part (b).					
6. (b)	Note	x f(x) 0.6415 -0.001630649 0.6416 -0.001265547 0.6417 -0.000900435 0.6418 -0.000535312 0.6419 -0.000170180 0.6420 0.000194963 0.6421 0.000500115 0.6423 0.001290451 0.6424 0.001655634 0.6425 0.002020827					

Question Number		Scheme		Notes	Marks	
7. (i)(a)	Reflection	1		Reflection		
	in the v-av	zis		dependent on the previous B mark	dB1	
	In the y-dz			Allow y-axis or $x = 0$	uD1	•
$(\mathbf{i})(\mathbf{z})$	G((1				(2	2)
(1)(a)	Stretch sc	ale factor – I		Stretch scale factor - I	B1	
Way 2	parallel to	the <i>x</i> -axis		dependent on the previous B mark	dB1	
					C	2)
	()(3	0)		$\begin{pmatrix} 3 & \dots \end{pmatrix}_{\dot{-} \text{ or }} \begin{pmatrix} 1 & \dots \end{pmatrix}_{\dot{-}}$	M1	
(b)	$\left\{ \mathbf{B} = \right\} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	ı j		$(\dots 1)$ $(\dots 3)$	A 1	
				Correct matrix	AI ('	2)
	Note: Darts (ii)(a) and (ii)(b) can be marked together				(4	<u>2)</u>
			into) car			
	$\{k=\} ($	$(-4)^2 - (3)(-3); = 5$	Att	tempts $\sqrt{\pm 16 \pm 9}$ or uses full method of	M1;	
(ii)(a)	or			trigonometry to find $k =$		
	$k\cos q =$	$-4, k \sin q = -3$		5 only	A1 cao	
	to give Q	$= \dots$ and then $\kappa = \dots$				2)
		3		Uses trigonometry to	(4	2)
	$5\cos q = -$	-4, $5\sin q = -3$, $\tan q = \frac{3}{4}$		find an expression in the range		
(b)	(3)			(3.14, 4.71) or $(-3.14, -1.57)$	M1	
	or tan ⁻¹	$\frac{3}{4^{\frac{1}{7}}}$ and e.g. $q = p + \tan^{-1}\left(\frac{3}{4^{\frac{1}{7}}}\right)$		or (180°, 270°) or (-180°, -90°)		
	$\int a - n + b$	(1) (1)	dn)]	awrt 3 79 or awrt - 2 50	A 1	
	$\left\{ q - p + r \right\}$	(-5.79)	up)	awit 5.75 of awit = 2.50	AI	3)
					(4	2)
	(1)			$\frac{1}{25} \text{ or } \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$	M1	
(0)		$\overline{25}$ $(3 - 4)^{}$		$\frac{1}{1} \left(\begin{array}{ccc} -4 & -3 \\ \div & \text{or} \end{array} \right) \left(\begin{array}{ccc} -0.16 & -0.12 \\ \div & \text{o.e.} \end{array} \right)$	A1 o.e.	
				25(3-4) (0.12 - 0.16)		
					(2	2)
			Junction	n 7 Notos	1	.0
7 (i)	Note	Give B1B0 for "Reflection in the	v-axis a	bout (0, 0)".		
(i)	Note	Send to review a response which s	states. e.	g. "enlargement parallel to the <i>x</i> -axis"		_
(ii)(b)	Note	Allow M1 (implied) for awrt 217	° or awi	rt -143°		
/		$\left(k\cos \alpha - k\sin \alpha\right) \left(-4 - 2\right)$				
(ii)(b)	Note	$\begin{pmatrix} k\cos q & -k\sin q \\ k\sin q & k\cos q \end{pmatrix} = \begin{pmatrix} -4 & -3 \\ -3 & -4 \end{pmatrix}$				
		(-0.8 - 0.6)				
(11) (c)	Note	Allow M1 for $0.6 - 0.8\dot{j}$				

Question Number	Scheme			Notes	Marks	
8.	$C: y^2 = 4ax$, <i>a</i> is a positive constant. $P(at^2, 2at)$ lies on <i>C</i> ; <i>k</i> , <i>p</i> , <i>q</i> are constants.					
(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \triangleright \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{\frac{1}{2}}$	$\frac{1}{2} = \frac{\sqrt{a}}{\sqrt{x}}$		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$		
	$y^2 = 4ax \triangleright 2y \frac{\mathrm{d}y}{\mathrm{d}x} = -$	4 <i>a</i>		$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2at}\right)^{\frac{1}{2}}$			their $\frac{dy}{dt} = \frac{1}{\text{their } \frac{dx}{dt}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \text{ or}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2a\left(\frac{1}{2}\right)$	$\frac{1}{2at}$	Correct differentiation	A1	
	So, $m_N = -t$ Ap	pplies $m_N =$	$=\frac{-1}{m_T},$	where m_T is found from using calculus.	M1	
	2	<u> </u>	. • 1 .	Can be implied by later working		
	$y - 2at = -t(x - at^{2})$ or $y = -tx + 2at + at^{3}$ Correct straight line method for an equation of a non- where $m_{N}(1 m_{T})$ is found from using calc				M1	
	leading to $y + tx = at^3 + 2at$ (*) Correct solution only			A1		
	Note: m_N must be a function of t for the 2 nd M1 and the 3 rd M1 mark.				(5)	
(b)	Coordinates of <i>B</i> are $(5a, 0)$ (5 <i>a</i> , 0). Condone $x = 5a$ if coordinates are not stated.			B1		
			2) 2		(1)
(c)	$\{\text{their } (5a,0) \text{ into} \}$	y + tx = 0	$at^{3} + 2$	$at \triangleright $ $5at = at^3 + 2at$		
	{	$\left\{m_{BP}=\right\} \frac{2}{a}$	$\frac{2at - 0}{t^2 - 5a}$	$\frac{1}{t} = -t$		
	$PB^2 = (at^2 - 5a)^2 + (2a)^2$	$(t)^2 \vartriangleright \frac{\mathrm{d}(P)}{\mathrm{d}t}$	$\frac{B^2}{t} = 2$	$2(at^2 - 5a)2at + 2(2at)2a = 0$	M1	
	$PB^2 = a^2t^4 - 10a^2t^2 + 25a^2 + 4a^2$	$^2t^2 = a^2t^4 -$	$-6a^{2}t^{2}$	+ $25a^2 \vartriangleright \frac{\mathrm{d}(PB^2)}{\mathrm{d}t} = 4a^2t^3 - 12a^2t = 0$		
	Substitutes their coordinates of <i>B</i> in	nto the norm	nal equ	nation or finds m_{BP} and sets this equal to		
	their m_N or minimises PB or PB^2 t	to obtain a	n equa	ation in <i>a</i> and <i>t</i> only . Note: $t \circ q$ or <i>p</i> .		
	$t^3 - 3t = 0$ or $t^2 - 3 = 0 \vartriangleright t =$			dependent on the previous M mark Solves to find $t =$	dM1	
	$\{Q, R \text{ are}\}$ $(3a, 2\sqrt{3}a)$ and $(3a, -1)$	$2\sqrt{3}a$		At least one set of coordinates is correct.	Al	
		,		boui sets of coordinates are correct.	AI	(4)
(d)	1 DOD 1 (2/2 5))(5 - 2)		Poir	Its are in the form $B(ka, 0)$, $Q(a, b)$		
	Area $BQR = -(2(2a\sqrt{3}))(5a - 3a)$			and $R(a, -b), k \downarrow 0$ and		
	or $=\frac{1}{2}$ 5 <i>a</i> 3 <i>a</i> 3 <i>a</i> 5 0 2 $\sqrt{3}a$ 2 $\sqrt{3}a$ 6		apj	plies either $\frac{1}{2}((ka - a))(2b)$ or writes	M1	
				down a correct ft determinant statement.		
	$=4a^2\sqrt{3}$			$4a^2\sqrt{3}$	A1	/ - `
						<u>(2)</u> 12
L			1		1	

Question Number		Scheme	Notes	Marks			
8. (c) Way 2	$y^{2} = 4ax \text{ in} (x - 5a)^{2} + x^{2} - 10ax + x^{2} - 6ax + 2{"b^{2} - 4ac}$	nto $(x - 5a)^2 + y^2 = r^2$ $4ax = r^2$ $25a^2 + 4ax = r^2$ $25a^2 - r^2 = 0$ $= 0" \triangleright \begin{cases} 36a^2 - 4(1)(25a^2 - r^2) = 0 \end{cases}$	Substitutes $y^2 = 4ax$ into $(x - \text{their } x_A)^2 + y^2 = r^2$ and applies " $b^2 - 4ac = 0$ " to the resulting quadratic equation.	M1			
	$36a^{2} - 100a^{2} + 4r^{2} = 0$ $4r^{2} = 64a^{2} \vartriangleright r^{2} = 16a^{2} \trianglerighteq r = 4a$ So $r = 4a$ gives $x^{2} - 6ax + 25a^{2} - 16a^{2} = 0$ $x^{2} - 6ax + 9a^{2} = 0 \trianglerighteq (x - 3a)(x - 3a) = 0$ $\bowtie x = 3a$		dependent on the previous M mark Obtains $r = ka, k > 0$, where k is a constant and uses this result to form and solve a quadratic to find x which is in terms of a.	dM1			
	$\begin{cases} y^2 = 4ax \\ \{Q, R \text{ are}\} \end{cases}$	$\Rightarrow \begin{cases} y^2 = 4a(3a) = 12a^2 \Rightarrow y = \pm 2\sqrt{3}a \\ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a) \end{cases}$	At least one set of coordinates is correct.	A1			
			Both sets of coordinates are correct.	A1 (4)			
	Question 8 Notes						
8. (c)	A marks	A marks Allow $(3a, \sqrt{12}a)$ and $(3a, -\sqrt{12}a)$ as exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a, -2\sqrt{3}a)$ respectively.					

Question Number	Scheme		Notes		Marks	
9.	(i) $\overset{n}{\underset{r=1}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{$					
(i)	$n = 1: LHS = 4 - 3 + 1 = 2$, RHS $= 1^{3}(1+1) = 2$ Sho RHS			by so is states both LHS = 2 and $S = 2$ or states LHS = RHS = 2	B1	
	(Assume the result is true for $n = k$) $\overset{k+1}{\underset{r=1}{\overset{k=1}{\overset{a}}}}$ $(4r^3 - 3r^2 + r) = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + (k+1)$ Adds the $(k+1)^{\text{th}}$ term to the sum of k terms				M1	
	$= (k+1)\left[k^{3}+4(k+1)^{2}-3(k+1)+1\right]$ or $(k+1)\left[k^{3}+4k^{2}+5k+2\right]$ or $(k+2)\left[k^{3}+3k^{2}+3k+1\right]$ dependent on the previous M mark. Takes out a factor of either $(k+1)$ or $(k+2)$				dM1	
	= (k+1)(k+1)(k+1)(k+2) dependent on both the previous M marks. Factorises out and obtains either $(k+1)(k+1)()$ or $(k+1)(k+2)()$					
	$= (k+1)^{3}(k+1+1)$ or $= (k+1)^{3}(k+2)$		A	chieves this result with no errors.	A1	
	If the result is true for $n = k$, then it is true for	n = k + 1	As t	ne result has been shown to be		
	true for $n = 1$, then the result is true for all n (\hat{l})					
	Note: Expanded quartic is $k^4 + 5k^3 + 9k^2 + 7k + 2$				6	
(ii)	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
Way 1	$f(k+1) - f(k) = (5^{2(k+1)} + 3(k+1) - 1) - (5^{2k} + 3k)$: - 1)		Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - f(k) = 24(5^{2k}) + 3$					
	$= 24(5^{2k} + 3k - 1) - 9(8k - 3)$			$24(5^{2k}+3k-1)$ or $24f(k)$	A1	
	or = $24(5^{2k}+3k-1) - 72k+27$ - $9(8k-3)$ or $-72k+27$				A1	
	f(k+1) = 24f(k) - 9(8k - 3) + f(k)dependent on at least one of the previous accuracyor $f(k+1) = 24f(k) - 72k + 27 + f(k)$ marks being awarded. Makes $f(k+1)$ the subject				dM1	
	or $f(k+1) = 25(5^{2k}+3k-1) - 72k+27$ and expresses it in terms of $f(k)$ or $(5^{2k}+3k-1)$					
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be					
	true for $n = 1$, then the result is true for all n (\hat{l} (\hat{l}))					
(ii)	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
Way 2	$f(k+1) = 5^{2(k+1)} + 3(k+1) - 1$		Attempts $f(k+1)$		M1	
	$f(k+1) = 25(5^{2k}) + 3k + 2$					
	$= 25(5^{2k} + 3k - 1) - 9(8k - 3)$			$25(5^{2k}+3k-1)$ or $25f(k)$	A1	
	or = $25(5^{2k} + 3k - 1) - 72k + 27$			-9(8k-3) or $-72k+27$	A1	
	1(k+1) = 251(k) - 9(8k - 3) or $f(k+1) = 25f(k) - 72k + 27$ ma	ndent on rks bein¤	at lea awar	st one of the previous accuracy ded. Makes $f(k+1)$ the subject	dM1	
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$					
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be					
	<u>true for $n = 1$</u> , then the result is true for all n (\hat{l})				A1 cso	
					12	

PMT

Question Number		Scheme			Notes	Marks	
		(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9					
(ii)	General Method: Using $f(k+1) - mf(k)$; where <i>m</i> is an integer						
Way 3	$f(1) = 5^2 + 3 - 1 = 27$				f(1) = 27 is the minimum	B1	
	$f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k})$		$m(5^{2k}+3)$	3 <i>k</i> - 1)	Attempts $f(k+1) - mf(k)$	M1	
	f(k+1) -	$\frac{f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)}{= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)} $ (25 - m)(5 ^{2k} + 3k - 1) or (25 - m)f(
	= (2					A1	
	or $= (2)$	$(25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $-9(8k - 3) \text{ or } -72k + 27$		-9(8k-3) or $-72k+27$	A1		
	f(k+1) or f(k+1)	f(k) = (25 - m)f(k) - 9(8k - 3) + m f(k) = (25 - m)f(k) - 72k + 27 + m	mf(k) nf(k)	depende Makes f(k	nt on at least one of the previous accuracy marks being awarded. +1) the subject and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$	dM1	
	If the result is true for $n = k$ then it is true for $n = k + 1$ As the result has been shown to be						
	<u>true for $n = 1$</u> , then the result is is true for all n ($\hat{1}$)						
(ii)		General Meth	hod: Usin	ng f($k+1$) -	mf(k)		
Way 4		$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
	f(k+1) -	$F(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ Attempts $f(k+1) - mf(k)$		Attempts $f(k+1) - mf(k)$	M1		
	f(k+1) -	$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$					
	$e \sigma m = -$	$2 \triangleright f(k+1) + 2f(k) = 27(5^{2k})$	$(k^{2}) + 9k$		$m = -2$ and $27(5^{2k})$	A1	
	0.5. 11	2 1 1(11 + 1) + 21(11) 27(3) - > N	m = -2 and $9k$		A1	
	$f(k+1) = 27(5^{2k}) + 9k - 2f(k)$ dependent on at least one of the previous accurac marks being awarded. Makes $f(k+1)$ the subject				ast one of the previous accuracy orded. Makes $f(k+1)$ the subject	dM1	
	70.1	and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$					
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be						
	true for $n = 1$, then the result is true for all n (\hat{l})						
	Note	Some candidates may set $f(k)$	=9M ar	nd so may pi	rove the following general result		
		• $\{f(k+1) = 25f(k) - 9\}$	9(8k-3)	\triangleright f(k+1)=	225M - 9(8k - 3)		
		• $\{f(k+1) = 25f(k) - 72k + 27\} \mapsto f(k+1) = 225M - 72k + 27$					
		Question 9 Notes					
(i)	Note	LHS = RHS by itself is not sufficient for the 1^{st} B1 mark in part (i).					
(1) & (11)	Note	Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points aither at the end of their solution or as a permetive in their solution					
(ii)	Note	Either at the end of their solution or as a narrative in their solution. In part (ii) Way 4 there are many alternatives where condidates from an isolating $h(5^{2k})$					
(11)	11010	m part (n), way 4 mere are many alternatives where candidates focus on isolating $D(5^{-1})$, where b is a multiple of 9. Listed below are some alternative results:					
		$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9 \qquad f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$					
		$f(k+1) = 27(5^{2k}) - 2f(k) + 9$	9 <i>k</i>	f(k+1)	$) = 9(5^{2k}) + 16f(k) - 45k + 18$		
		See the next page for how thes	se are deri	ived.			

	Question 9 Notes Continued						
	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9						
9. (ii)	The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$						
	Way 4.1	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 36(5^{2k}) - 11(5^{2k}) + 3k + 2$					
		$= 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	$m = -11$ and $36(5^{2k})$ m = -11 and $36k - 9$	A1 A1			
		$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$ or $f(k+1) = 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	as before	dM1			
	Way 4.2	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 27(5^{2k}) - 2(5^{2k}) + 3k + 2$					
		$= 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	$m = -2$ and $27(5^{2k})$ m = -2 and $9k$	A1			
		$f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ or $f(k+1) = 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	as before	dM1			
	Way 4.3	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$					
		$= 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	$m = 7$ and $18(5^{2k})$ m = 7 and $-18k + 9$	A1 A1			
		$f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$ or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	as before	dM1			
	Way 4.4	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$					
		$= 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	$m = 16 \text{ and } 9(5^{2k})$ m = 16 and -45k + 18	A1 A1			
		$f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$ or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	as before	dM1			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom